Inter-ictal- and ictal-like epileptic discharges in the dendritic tree of neocortical pyramidal neurons.
نویسنده
چکیده
Dendritic mechanisms have been implied to play a key role in the formation of epileptic discharges. However, presently only a handful of direct dendritic recordings have been reported during epileptic discharges. In this study, I performed simultaneous voltage recordings from the soma and apical dendrite of the same neuron combined with calcium-imaging measurements to investigate inter-ictal- and ictal-like epileptic discharges in dendrites of layer 5 pyramidal neurons. Neocortical brain slices treated with bicuculline (BCC) produced both isolated "inter-ictal" paroxysymal depolarization shift (PDS) responses and electrographic seizures. Concomitant voltage recordings from the soma and apical dendrite revealed that PDS responses developed in both the apical dendrites and soma. However, the two responses differed from one another. In apical dendrites, the PDS was significantly higher in amplitude and shorter in duration compared with the somatic PDS. The PDS response in dendrites had a peak amplitude of 68.9 +/- 2.2 (SD) mV, peak voltage value of 9.3 +/- 2.7 mV, and half-width of 203.8 +/- 38.4 ms. In contrast, the somatic PDS had a peak amplitude of 48.7 +/- 2.7 mV, peak voltage value of -11.9 +/- 3.1 mV, and half-width of 247.8 +/- 57.3 ms (P < 0.01, n = 18). In addition the apical dendritic PDS always preceded the somatic counterpart in all 18 neurons examined. Concomitant calcium-imaging measurements showed the PDS evoked large calcium influx into the entire dendritic tree including the apical tuft, basal, and oblique dendrites. The PDS evoked [Ca(2+)](i) were not uniform along the dendritic tree, being highest in the oblique dendrites (71.3 +/- 14.5 microM) and lowest at the distal tuft branches (9.3 +/- 0.7 microM). The PDS responses persisted after blockade of voltage-gated sodium channels by intracellular QX-314 but became narrower (by 69.6 +/- 9.7%) following intracellular administration of the voltage-gated calcium channel blocker D600. Electrographic seizures recorded in the soma and apical dendrites were composed of recurrent bursts. The initial bursts represented PDS responses. During the seizure the amplitude of bursts gradually attenuated and reached an average value of 26 +/- 13% of the initial ictal PDS burst. Double recordings during electrographic seizures revealed the initial one to four ictal bursts appeared first at the apical dendrite while later ictal bursts were always observed first at the soma. In conclusion, the results of this study show "inter-ictal" PDS responses originated in the apical dendritic tree, were partially mediated by voltage-gated calcium channels and spread throughout the dendritic tree including the fine tuft, basal, and oblique dendrites. During electrographic seizures the origin of epileptic bursts shifted from the apical dendritic tree to the soma-basal region.
منابع مشابه
Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملEpilepsy – When Chaos Fails
Temporal lobe epilepsy is characterized by episodic paroxysmal electrical discharges (ictal activity) originating in mesial structures of the temporal lobe. These discharges consist of organized synchronous activity of mesial temporal neurons, particularly those of the hippocampus. This activity is seen as rhythmic medium to high amplitude slow waves or spike and slow wave discharges on the ele...
متن کاملIctal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses
Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal d...
متن کاملNeurobiology of Disease The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity
Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated wi...
متن کاملField effects and ictal synchronization: insights from in homine observations
It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and speculate about the possible role of field effects in neuronal synchroniz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002